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Frontal cortex function as derived 
from hierarchical predictive coding
William H. Alexander1 & Joshua W. Brown2

The frontal lobes are essential for human volition and goal-directed behavior, yet their function remains 
unclear. While various models have highlighted working memory, reinforcement learning, and cognitive 
control as key functions, a single framework for interpreting the range of effects observed in prefrontal 
cortex has yet to emerge. Here we show that a simple computational motif based on predictive coding 
can be stacked hierarchically to learn and perform arbitrarily complex goal-directed behavior. The 
resulting Hierarchical Error Representation (HER) model simulates a wide array of findings from fMRI, 
ERP, single-units, and neuropsychological studies of both lateral and medial prefrontal cortex. By 
reconceptualizing lateral prefrontal activity as anticipating prediction errors, the HER model provides 
a novel unifying account of prefrontal cortex function with broad implications for understanding the 
frontal cortex across multiple levels of description, from the level of single neurons to behavior.

The frontal lobes are central to volition and higher cognitive function, especially goal-directed behavior1–3. 
Recent work has highlighted reinforcement learning4–6, performance monitoring7,8, and hierarchical abstraction 
and working memory9–11 as key elements of frontal function, often under the framework of cognitive control12. 
Considering the range of methods and perspectives applied to investigating prefrontal cortex (PFC), there is a 
clear need for a common framework for interpreting the variety of functions assigned to the frontal lobes.

Within the past decade, predictive coding has emerged as just such a potentially unifying framework for 
understanding the organization and function of the brain13. Hierarchical predictive coding, as well as related 
approaches including free energy14 and Hierarchical Bayesian Inference15, generally treat bottom-up processing 
of information in the brain as a source of evidence that must be “explained away” by top-down processes carrying 
information regarding the likely causes of sensory information. In the predictive coding framework, top-down 
processes provide predictions from superior hierarchical levels to inferior levels, while residual prediction errors, 
i.e., input that cannot be accounted for by the predictions supplied by top-down processes, are carried from infe-
rior levels to superior levels. This motif of top-down predictions and bottom-up prediction errors repeats through 
successive hierarchical iterations, forming a sophisticated processing stream composed of “dumb processes that 
correct… error in the multi-layered prediction of input”13. Predictive coding accounts have achieved great suc-
cess in accounting for effects related to the processing of sensory input16–22. Given this success in accounting for 
the structure and function of the brain in early sensory areas, it has been suggested13 that the predictive coding 
framework might be extended to account for the organization of brain regions underlying sophisticated cognitive 
processes, especially the frontal lobes.

There are several reasons to believe that predictive coding formulations may indeed map well to PFC in addi-
tion to primary sensory areas. PFC is generally considered to be organized hierarchically along a rostrocaudal 
abstraction gradient9,10,23,24, with rostral regions coding for abstract rules and task sets, while caudal regions rep-
resent concrete stimulus-response associations. Significant portions of PFC are specialized for reporting error as a 
deviation from predicted events7,25, and distinct regions within medial PFC (mPFC) appear to encode error at dif-
ferent levels of abstraction26,27, while regions within dorsolateral PFC (dlPFC) appear to encode hierarchical task 
set information23 and to contextualize behavioral responses based on a learned model of the environment10,24. 
However, while convergent evidence suggests that predictive coding accounts of brain function and organization 
may indeed extend into the frontal lobes, this proposed extension has remained largely hypothetical, and sig-
nificant outstanding questions remain to be answered. Among these questions is whether the predictive coding 
framework can be leveraged to capture high-level cognitive behaviors, generally understood to rely on the frontal 
lobes, as well as how a predictive coding account, based on the computation of progressively more abstract error 
information, might inform our understanding of the information represented by single neurons and regions in 
PFC.
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In this report, we demonstrate a proof of principle that predictive coding computational models can account 
for a wide array of effects in the prefrontal cortex. In doing so, we propose solutions to several fundamental 
problems in neuroscience, especially the function of the frontal lobes and the nature of the representation in PFC. 
First, we show that the Hierarchical Error Representation (HER) model of mPFC and dlPFC can learn to perform 
a diverse array of tasks that require human subjects to represent complex relationships amongst task stimuli and 
to maintain information over extended periods of time. At a single hierarchical level, the HER model suggests 
that error signals computed in mPFC7,25,28 can be used to train representations of the error signal in dlPFC. Error 
representations learned by dlPFC are associated with task stimuli that reliably precede prediction error signals 
generated by mPFC such that, on subsequent stimulus presentations, error representations maintained in dlPFC 
may be deployed to reduce prediction errors in mPFC. Residual errors - those that cannot be fully predicted at 
a given level - act as a “proxy” outcome for higher levels of a mPFC/dlPFC hierarchy, and these proxy outcomes 
may in turn be the targets for further prediction and error computations. The result is a self-organizing hierarchi-
cal network that learns, maintains, and flexibly switches working memory representations as a product of learning 
to minimize prediction error. (Fig. 1; supplementary material/methods).

The essential principle of the HER model can be distilled to this: A major function of prefrontal cortex is learn-
ing to predict likely prediction errors. With this approach, we show that effects observed in PFC can be derived 
from the manipulation of quantities related to a common neural code of prediction error, including the activity 
of single units, BOLD activity during the update and maintenance of working memory, and multi-variate pattern 
analysis. The HER model thus reconceptualizes PFC as a region involved in computing and maintaining pro-
gressively more abstract error representations in order to govern behavior in an efficient and adaptive fashion. 
In the framework of predictive coding, hypothetical causes used to “explain away” prediction errors reported by 
lower levels emerge as each hierarchical level learns representations of residual errors reported by lower levels, 
and the degree to which a given hierarchical level influences the processing of a lower level is proportional to 

Figure 1.  Predictive Coding in Prefrontal Cortex. (A) In the HER model, information is passed to hierarchical 
levels through bottom-up and top-down pathways. In the bottom-up paths (top), regions in mPFC compute 
an error signal as the discrepancy between the expected and actual output of inferior hierarchical levels. Error 
signals generated by mPFC train error predictions in lateral PFC which are associated with task stimuli that 
reliably precede them. Following training, learned representations of error predictions are elicited by task 
stimuli and actively maintained in dlPFC for as long as they have predictive value. In the top-down pathway 
(bottom), error predictions are passed from superior hierarchical levels in order to successively modulate 
predictions made at inferior levels. (B) The organization of the HER model is similar to formulations of 
predictive coding and free energy previously used to explain results from early sensory processing areas and 
hypothesized to extend into the frontal lobes. Figure reprinted with permission from Friston14. (C) A detailed 
circuit diagram of the HER model shows bottom-up (red and green) and top-down (violet) pathways, as well as 
the working memory gating mechanism that allows information to be maintained over extended durations. The 
connections match known neuroanatomy41,42.
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error representations learned and maintained by the model (supplementary materials/methods). Essentially, the 
neural code in frontal cortex is formed as neurons learn to anticipate, and thus minimize, prediction errors. We 
have shown how prediction errors can be used to drive cognitive control signals29, and a neural code in terms of 
prediction errors contrasts notably with competing proposals that mPFC represents value or choice difficulty30,31, 
or that lateral PFC represents working memory32 or categorical abstractions without necessarily specifying how 
those are learned33.

Previous computational simulations of the HER model have demonstrated its ability to learn complex cog-
nitive tasks in a manner comparable to human performance, both in terms of behavioral markers of learning as 
well as the speed at which such tasks were acquired28. The model’s ability to perform these tasks is noteworthy 
considering that it is composed of a repeated motif of relatively “dumb processes” organized hierarchically: indi-
vidual hierarchical levels instantiate simple RL learners that receive feedback in the form of error signals gener-
ated by lower levels, and whose predictions serve to modulate lower level predictions. Nevertheless, with respect 
to neuroscience, previous work has not shown whether or how predictive coding models such as the HER model 
might account for empirical behavioral and neuroscience results in the frontal cortex. Here we demonstrate how 
the HER model accounts for a range of empirical findings and is thus a plausible model of frontal cortex function. 
Our aim here is not to exclude other models directly – instead, we show that the HER model breaks new ground 
as a proof of principle that empirical findings from the frontal cortex can be plausibly modeled by predictive 
coding mechanisms, and specifically by the HER model. As such, the model provides not only a new perspective 
on frontal cortex function but also one of the broadest accounts of empirical findings in the frontal cortex to date.

In order to support the claim that the HER model provides a sufficient account for the diversity of neural 
signals observed in PFC at the ensemble (BOLD, EEG) and single-unit levels, we apply the model to a selection 
of cognitive paradigms in which PFC function has been implicated. Each selected paradigm reflects a critical 
aspect of PFC function: maintaining hierarchical task structure (simulation 1), the nature of distributed rep-
resentations in PFC (simulation 2), response profiles of individual neurons (simulations 3 & 4), the contribution 
of PFC to behavior (simulation 5), and how major sub-regions of PFC interact in the course of ongoing behavior 
and lesion-induced deficits (simulations 6 and 7). The overarching rationale, therefore, is to demonstrate that a 
single unifying principle, namely that of suppression of error signals, is sufficient to account for the range of neu-
ral responses observed in PFC, as well as the varieties of functions generally attributed to the frontal lobes. Our 
simulations use a single parameterization of the model (see Supplementary Material) that is not explicitly tailored 
to each experiment in order to match qualitative patterns of neural responses and behavior, providing support for 
the generality of error representation and processing as the underlying factor allowing the model to capture the 
range of results described here. By casting our hierarchical reinforcement learning approach in the framework of 
predictive coding, our results provide additional support for the universality of error minimization throughout 
neocortex, from low-level sensory processes to high-level cognitive behaviors, and suggest a common neural 
currency of error and error representation throughout the brain.

Results
Here we show how the HER model can simulate and account for a variety of published empirical findings in the 
dlPFC and mPFC. The results reported below are by no means exhaustive. They serve to emphasize the main 
point that the HER model of PFC, as an instance of predictive coding formulations, is able to autonomously learn 
complex tasks in a manner that reproduces patterns of behavior, neuropsychological effects, and neural activity 
as measured by fMRI, EEG, single unit neurophysiology observed in empirical investigation. Details of the sim-
ulations can be found in the supplementary material, along with a description of the equations defining the HER 
model. The supplementary material also includes further simulations that demonstrate more of the explanatory 
power of the HER model.

Simulation 1: Context, Working Memory, & Control.  The role of dlPFC in working memory and rep-
resentation of task structure remains an ongoing research concern. In the past two decades, numerous fMRI 
studies have investigated the structure and function of dlPFC under various hierarchical task and working mem-
ory demands. In Koechlin et al.24, the authors investigated the function of dlPFC in two tasks while manipulating 
the amount of information conveyed by task-relevant stimuli. In their Motor Condition, activity throughout 
dlPFC – from areas labeled PMd (dorsal premotor cortex) to rostral dlPFC –was observed to increase mono-
tonically as the information content of a contextual cue increased (Fig. 2B). An additional increase in activity 
was observed only in PMd when subjects were required to make two responses rather than a single response. In 
Simulation 1 (Fig. 2A,C), the HER model accounts for the general trend of increasing activity across dlPFC as 
the increasing strength of error prediction representations learned by the model – more information means more 
potential errors that must be accounted for. Summary model activity for each condition correlates with BOLD 
signal change observed in humans data for both the Motor condition (r = 0.70, p < 0.001) and the Task condition 
(r = 0.75, p < 0.001). This account complements the Information Cascade model24 based on information theoretic 
formulations; in information theory, information is the amount by which uncertainty about a random variable 
decreases given another variable. Error predictions learned by the HER model are used to modulate outcome 
predictions in order to support correct behavior - that is, their role is to reduce uncertainty regarding the likely 
outcomes of actions. The HER model accounts for the additional increase in activity observed in PMd through 
the transient update of representations (see supplementary material) at the lowest model level when successive 
stimuli mandate different responses, while conditions in which only a single response is required do not entail an 
additional update (Fig. 2A, bottom).

Simulation 2: Learned Representation.  While the HER model is able to capture a range of results related 
to the activity of ensembles of neurons reflected by the BOLD signal (see supplementary material), it also posits 
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a particular representation scheme deployed in dlPFC. Namely, single units in the HER model dlPFC each code 
for a component of a multi-dimensional error prediction. In addition to capturing data related to the strength of 
activity observed in dlPFC, then, the HER model should also be able to account for data relating to the activity of 
individual neurons as well as techniques designed to decode neural activity such as MVPA.

To investigate whether the error prediction representations learned by the HER model are consistent with 
those observed in human subjects, we recorded activity from the model as it performed the 1–2AX continuous 
performance task (Simulation 2, Fig. 3A). We subsequently classified active representations in the model dur-
ing periods of the task in which the model had been shown high- and low-level context variables (see Online 
Methods), but prior to a potential target cue being displayed. This approach is similar to the multi-voxel pattern 
analyses reported by Nee & Brown11. Classification of the model representations is consistent with that observed 
in human subjects (Fig. 3A): at the lowest hierarchical level, sequences that may culminate in a target response 
(1 A/2B) and those that will certainly not culminate in a target response (1B/2 A) are represented in a distinct 
fashion (Fig. 3A, Bottom). However, the representations also partially overlap such that 1 A sequences are par-
tially categorized as 2B sequences, while 1B sequences are partially categorized as 2 A sequences. At level 2 of the 
HER model, classification of each sequence is more decisive, with each unique sequence (1 A/1B/2 A/2B) being 
unambiguously decoded (Fig. 3A, Middle). This result is similar to human data, in which a region in mid-dlPFC 
shows a trend toward increased evidence for unique sequence coding. Finally, at the third hierarchical level 
(Fig. 3A, Top), sequences beginning with 1 or 2 are each collapsed (i.e., equal evidence for 1 A and 1B), reflecting 

Figure 2.  Information encoding in dlPFC. Simulated data is enclosed in double-bordered boxes throughout 
the manuscript. As the information content of a context cue increases, calculated in Bits (X axis), activity 
across hierarchically organized regions of dlPFC increases. The strength of error predictions maintained in 
dlPFC is proportional to information content: the more informative a cue is, the larger a reported error will 
be without the information supplied by that cue. (A) The HER model captures effects of information related 
both to the nature of task-relevant stimuli (x axes) as well as responses that may be required (y axes). The HER 
thus provides a complementary account to the Information Cascade model of PFC. (B) In the Task Condition 
of Koechlin et al.24, activity across dlPFC is observed to increase with the information content of a contextual 
cue. However, here activity in caudal dlPFC (panel B, middle) shows an additional increase when subjects must 
occasionally switch between two tasks (vowel/consonant, upper/lower case identification). (C) This additional 
increase related to task switching is accounted for as transient increases in activity in the HER model when the 
nature of the task changes (middle row).
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Figure 3.  Distributed Representations in PFC. Separate units in the HER model represent components 
of a hierarchically-elaborated, multi-dimensional error prediction, suggesting how cognitive tasks may be 
represented neurally. (A) Left: MVPA on error prediction representations maintained by the model while 
performing the 1-2AX CPT are consistent with human data showing that caudal regions of lPFC code for 
potential target sequences regardless of higher-order context, while more rostral regions encode more abstract 
context variables. Right: Human MVPA results, reprinted by permission from Nee & Brown11. Classification 
results of model representations are naturally more robust than pattern analysis of fMRI data since it is possible 
to record the activation of units in the model with perfect fidelity, while BOLD signals are subject to noise. 
Nevertheless, classification accuracy for model representations was significantly correlated with classification 
accuracy for human data at both hierarchical level 2/mid-DLPFC (r = 0.64, p = 0.0074) and level 1/dorsal 
premotor cortex (r = 0.91, p < 0.001). (B) Units in level 1 of the HER model (left) show activity related to match 
suppression and enhancement while performing a delayed match-to-sample task. Prior to observing a target 
stimulus, activity in these units reflects the equal probability of observing a match or non-match cue. Following 
the presentation of the target stimulus, the activity of units predicting the occurrence of a match is enhanced, 
while the activity for non-match-predicting units is suppressed, similar to data recorded from monkey lPFC 
(right). The HER model further predicts the existence of units showing effects of mismatch enhancement and 
suppression. Reprinted by permission from Miller et al.34.



www.nature.com/scientificreports/

6SCIentIfIC REPOrTs |  (2018) 8:3843  | DOI:10.1038/s41598-018-21407-9

the role of rostral dlPFC in coding high level context variables. The HER model explains the confusion of one tar-
get sequence with another (1 A/2B) and one non-target sequence with another (1B/2 A) at the lowest hierarchical 
level as a consequence of the increased activation of a predicted response common to both types of sequences – a 
target response in the former condition, and a non-target response in the latter condition.

Simulation 3: Single-Unit Neurophysiology.  The representation scheme proposed by the HER model 
suggests that individual neurons in lPFC should code for components of a distributed error representation, with 
single units signaling the identity and likelihood of observing a particular error. The model further suggests that 
these signals should evolve through the course of a trial as the likelihood of observing specific types of errors 
increases or decreases. We recorded activity in the model as it performed a delayed match-to-sample (DMTS) 
task (Simulation 3). Consistent with observed unit types recorded in macaque monkeys34, units in the HER 
model were identified with increased activity following the occurrence of a target probe that matched the sample 
(match enhancement; Fig. 3B), while distinct units were identified whose activity decreased following a matching 
target (match suppression; Fig. 3B). The HER model accounts for these two types of neurons as the modulation 
of predictions regarding possible responses following the presentation of a target cue. When a matching target 
is presented, the activity of units predicting a “match” response increases (enhancement) while the activity of 
units predicting a “non-match” response decreases (suppression). The HER model further suggests a priori that 
additional types of neurons should be observed in lPFC, namely mismatch enhancement and suppression neu-
rons – neurons whose activity reflects the increased and decreased likelihood of making a non-match and match 
response, respectively.

Simulation 4: Mixed Selectivity.  A further test of the error representation scheme postulated by the HER 
model is to examine whether the error representations learned by the model can explain the diversity of neuron 
types commonly observed in single-unit neurophysiological studies. Single neurons in PFC routinely exhibit 
mixed selectivity35, responding in a heterogeneous fashion to combinations of task-relevant stimuli. To inves-
tigate whether units in the HER model exhibit mixed selectivity, we simulated the model on a variation of the 
DMTS task36 in which the sample and target probes were preceded by a rule cue indicating whether the model 
should make a target response to MATCHING sample/target combinations (as in the usual DMTS), or whether 
the model should make a target response to NON-MATCHING sample/target combinations. Model activity 
recorded from level 2 of the HER hierarchy reveals a cluster of 6 units whose activity was reliably associated with 
task performance (Fig. 4). Two of these units responded exclusively to the rule cue - one unit was active following 

Figure 4.  Mixed Selectivity in the HER model. Units from level 2 of the HER model show complex patterns in 
response to stimuli. The responses of units 1–4 show interactions between a cued rule and a sample stimulus 
presented during a DMTS task, with some units preferentially responding to, e.g., combinations of ‘Same’ rules 
and ‘Picture 1’. Additional units in the model (5 & 6) respond solely to a preferred rule: ‘Same’ (Unit 6, panel 
B) or ‘Different’ (Unit 5, panel A). The combination of rule-specific and ruleXcue interaction units replicates 
similar findings in primate LPFC36.
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MATCHING cues, and silent for NON-MATCHING cues, while the other showed the opposite pattern. The 
remaining units exhibited complex patterns of activity across rule, modality, and picture identity conditions, 
consistent with neuron types observed in primate PFC.

Simulation 5: The neural bases of behavior in prefrontal cortex.  In addition to reproducing effects 
from human fMRI data and single-unit neurophysiology studies in monkey regarding the nature of representa-
tions in PFC, the HER model also suggests how these representations may influence patterns of behavior. In order 
to investigate the influence of hierarchically-organized representations on the timecourse of learned behaviors, 
we simulated the model (Simulation 5, Fig. 5) on a ternary probability estimation task37 in which subjects were 
asked to estimate the probability that a compound stimulus, varying along two feature dimensions, belonged to 
each of three categories. Our simulations differ from the original task in that, in the human experiment, subjects 
were allowed to choose samples from a two-dimensional problem space, whereas in our simulations, the model 
was shown randomly selected samples. Nonetheless, the target behavior of both the experiment and our simula-
tions was the same, namely probability judgments of categories. Human subjects were found to adopt three differ-
ent strategies in their probability judgments corresponding to their sampling behavior (Fig. 5, bottom row): one 
group (Least Certain, LC, left) consistently assigned near-equal probabilities for each category, a second group 
(Label Margin, LM, center) assigned a low probability to one category and approximately equal probabilities to 
the other two, while the final group (Most Certain, MC, right) assigned a high probability to one category and 
low probabilities to the others. Similar patterns of behavior were observed in the HER model during simulated 
experiments in which the learning rate was manipulated as follows (Fig. 5, top row). For simulations in which all 
learning was disabled, the model’s probability estimates corresponded to the LC group. When learning was ena-
bled only for the lowest hierarchical level, the model’s behavior corresponds to the LM group, reflecting learned 
representations that allow the model to rule out one of the three categories but lacking the higher order informa-
tion required to distinguish between the remaining two. Finally, when learning is enabled for all levels, the model 
rapidly learns the entire task, corresponding to the behavior of the MC group. In the HER model, these behaviors 
are intimately linked to learned error predictions: the model decomposes a task by selecting, at each hierarchical 
level, the stimulus feature that best reduces response uncertainty. In this latter case, model behavior progresses 
rapidly through the behaviors associated with disabling learning at successive stages: initially the model’s behavior 
corresponds to the LC group, followed by LM, before converging on a solution to the ternary estimation problem, 
suggesting how realistic learning may require the acquisition of low-level associations prior to the development 
of higher-level representations. The HER model thus provides an account of how neural representations acquired 

Figure 5.  Connecting representations to behavior. Behavior of the HER model (top) with learning selectively 
enabled at zero (left), one (center), and all (right) hierarchical levels. Each point represents a single trial. The 
model’s estimate of the probabilities of three possible categories matches the behavior of three groups of human 
subjects with varying information sampling strategies (bottom) during a ternary probability estimation task. 
The HER model thus provides an account of how task representation at the level of single units contributes to 
behavior. Reprinted by permission from37.
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during learning might contribute to patterns of behavior - the inability to form higher-order representations not 
only influences probability judgments, but may additionally inform self-directed sampling of information.

Simulation 6 & 7: Interaction of mPFC and dlPFC.  The HER model, being an extension of the predicted 
response-outcome (PRO) model of ACC/mPFC, already captures a wide array of effects observed within ACC7,25. 
The HER model extends beyond the PRO model in two critical ways: firstly, it specifies how mPFC and dlPFC 
may interact in order to support sophisticated behaviors, and secondly, it suggests a parallel hierarchical organi-
zation of mPFC in which successive hierarchical regions report increasingly abstract error signals. Such an organ-
ization of mPFC has been proposed previously38,39, and, indeed, evidence has been found that supports a role 
for mPFC in processing hierarchical errors27. The HER model is able to capture the pattern of activity observed 
by Kim et al.26 (Simulation 6) for distinct regions of both mPFC and dlPFC (Fig. 6A, middle column). The HER 
model interprets activity in hierarchically-organized regions of mPFC as the discrepancy between increasingly 
abstract predicted and observed outcomes, consistent with the role of mPFC in error computation proposed 
by the PRO model7,25, and complementary to the interpretation of Kim et al. However, while their notion of 
higher-order error signals is specified qualitatively, successively more abstract errors in the HER model are a 
product of quantitative predictions at lower levels that are insufficient to explain a subject’s observations, in line 
with the predictive coding framework that informs the structure of the HER model.

Additional evidence regarding the interaction of mPFC and dlPFC comes from studies of patients with 
dlPFC lesions40. In a delayed match to sample task, an Error Related Negativity (ERN) is observed in subjects 
with lesions to dlPFC for both correct and incorrect trials (Fig. 6B, left column). The HER model (Simulation 7, 
Fig. 6B) explains this as the inability to maintain relevant information across a delay period in order to modulate 
predictions regarding likely outcomes (Fig. 6B, right column). Without this additional contextual information 
available in the model, both correct and incorrect outcomes are surprising, resulting in increased mPFC activity 
in a lesioned version of the HER model on both types of trials.

Discussion
In this paper, we have deployed a new computational neural model, consistent with known anatomy41,42, to sim-
ulate a range of effects observed in studies of mPFC and dlPFC. Simulations demonstrate that the HER model 
captures various dlPFC effects, as well as how dlPFC and mPFC interact to support the acquisition and execu-
tion of sophisticated cognitive tasks. Because the HER model extends our previous PRO model of ACC/mPFC7, 
it can also comprehensively account for mPFC activity in simple cognitive control experiments as previously 
reported7,25. These results, taken as a whole, make the HER model among the most comprehensive models of 
PFC to date and provide a process model proof of principle that predictive coding formulations, coupled with 
representations based on the computation and manipulation of quantities derived from error, can account for a 
large corpus of PFC empirical findings.

The HER model provides a complementary perspective on existing models. Donoso et al.43 cast the PFC as 
searching for, evaluating, selecting, and discarding task strategies to maximize reward. In the HER model, task 
strategies are represented automatically as hierarchical self-organized abstract representations of task context, 
which serve as a working memory basis for guiding behavior. Strategies are discarded from working memory 
when they no longer provide useful predictive information about subsequent events, or when contingencies 
change such that predictive information in working memory is repurposed by retraining its connections to mod-
ulate lower level predictions differently. The HER model can switch strategies flexibly as task cues change, and it 
can learn new responses when environmental contingencies changes. As with other neural models that include 
PFC44, as well as models of hierarchical behavior4,45, the HER model captures key aspects of neural anatomy, 
neurophysiology, and behavior during performance of cognitive tasks. The HER model further addresses the 
question of how these tasks might be learned in the first place, as well as how the components of a task are repre-
sented as expected prediction errors. The HER model thus fills a critical void left by models concerned with how 
coherent behaviors are organized based on pre-existing representations without specifying the nature of those 
representations or how those representations were acquired4,44,45.

The HER model also addresses questions of how representations are gated into task-relevant prefrontal work-
ing memory. While other models posit reinforcement learning of what to store and when to allow stored elements 
to be output to other regions in order to maximize value46,47, the HER model rather learns what to store in order 
to minimize prediction errors. In this respect it performs a similar function as LSTM48, although the mechanisms 
of the HER model are entirely different.

More generally, the HER model demonstrates how the predictive coding framework may be extended into 
prefrontal cortex in order to account for sophisticated cognitive behaviors. The HER model inherits many of its 
formalisms from hierarchical RL - each hierarchical level of the HER model is a relatively straightforward RL 
learner based on previous models of mPFC7,25, and augmented with a WM component able to maintain rep-
resentations over periods of time49. Learning at each level of the model proceeds from the need to suppress the 
prediction errors signaled by lower levels, as in predictive coding accounts of perceptual inference50. It is notable 
that the model is not only able to replicate effects observed throughout PFC during the performance of complex 
tasks, but it also learns these tasks autonomously in a manner comparable to human performance28, despite its 
simple motif structure. By showing how models of tasks might be learned incrementally through the principle of 
suppressing prediction errors, the HER model provides a complementary account to approaches such as active 
inference51 which have been leveraged to explain neural activity as minimizing surprise by inferring states of 
previously learned models52. While not strictly performing active inference, the HER model (once trained) does 
in a sense infer latent states by storing corresponding external cues in working memory. These working memory 
activations constitutes a de facto representation of inferred states and thus provides a context-dependent pattern 
of activity that minimizes prediction error. More broadly, the HER model extends predictive coding formulations 
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in two key ways, both as an account of the function of the frontal lobes, as well as a plausible mechanism for 
learning models of the world, and in doing so, provides additional evidence in support of error minimization as a 
fundamental principle of brain function.

Figure 6.  Interactions of mPFC and dlPFC, Simulations 6 and 7. The HER model suggests how mPFC and 
dlPFC may cooperate to minimize prediction error through passing error and error prediction information 
through hierarchical levels. (A) Simulation 6. Increased activity in parallel hierarchical regions in the HER 
model, associated with mPFC and dlPFC, is associated with errors (mPFC) and updates of error predictions 
(dlPFC) at different levels of abstraction, from concrete (level 1, stimulus switch) to abstract (level 2, response 
switch; level 3, context switch). (B) Simulation 7. Modulation of mPFC by error predictions maintained in 
dlPFC is critical for contextualizing predictions regarding the likely outcome of actions. In a delayed-match-
to-sample task, the HER model correctly captures the elimination of the ERN following correct trials due to 
the maintenance of information regarding the sample cue. However, when the model is lesioned such that 
information normally maintained in dlPFC is no longer available to mPFC, the model produces an ERN to 
correct and error trials alike.
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